Strategies for Nontargeted Metabolite Profiling using UHPLC/MS in an Open Access Core Laboratory

A. Daniel Jones

Michigan State University
Brief history of the MSU facility

- Founded in 1968 by Chuck Sweeley
- NIH Regional Resource for 28 years until 1997
- Converted to open access facility in 2005
- Now consists of 12 mass spectrometers, 3 staff, 1 grad student assistant
Research Interests in Nontargeted Metabolome Analysis at MSU

- College of Agriculture
- Veterinary School
- Two medical schools
- Two DOE bioenergy centers
Organization of Mass Spectrometers

Nontargeted Profiling
- GC/quad 1: central metabolites (silylated)
- GC/quad 2: fatty acids (FAMEs, butylamides)
 - GC/quad 3: volatiles
 - GC/quad 4: carbohydrates
- GC/TOF: accurate mass measurements

- QTof 1: specialized metabolites, lipids, carbohydrates, lignin (no ion-pairing)†
 - QTof 2: central metabolites (with or without TBA ion pairing)**
 - MALDI-TOF: metabolite imaging

Targeted Profiling
- QQQ 1: amino acids/vitamins*
- QQQ 2: hormones/nucleotides**
- QQQ3: oxylipins/pheromones
- QQQ4: anything else

~ 130 trained users from ~50 PI labs
User fees range from $13-$47/hr
Training in nontargeted metabolomics

• How to not damage the instrument
• Experiment design
• Sample processing
• Analytical method selection
• Data analysis
Nontargeted specialized metabolomics for discovery of plant gene functions

- Breed introgression lines: plants with short inserts of genomics DNA from another genotype
- Rapid screening of metabolic phenotypes

http://zamir.sgn.cornell.edu/Qtl/il_story.htm
Rapid UHPLC-MS profiling of plant specialized metabolites

Schilmiller AL; Shi F; Jones AD; Last RL (2010)
Plant J. 61: 579-90.
Data-independent collision-induced dissociation
Mining for metabolites using fragment ion masses

Virtually all GSH conjugates yield a fragment ion of \(m/z \) 306.08 in negative mode
Stable isotope dynamics in specialized metabolism

Introduce 13C-labeled precursors to whole plant metabolism

Tomato seedlings \rightarrow 13CO$_2$ Labeling (pulse/chase) \rightarrow Leaf Dip Extraction \rightarrow LC-MS analysis \rightarrow 13C enrichment

Acylsugar S4:17 $\quad C_{29}H_{48}O_{15}$ $[\text{M+HCOO}]^-$

Unlabeled control 0.15 mol% 13C Labeled sample 8.62 mol% 13C
Multiplexing CID aids measurement of labeling of substructures with minimal overlap

- Large numbers of heavy isotopes may lead to overlapping features
- Energy-resolved CID helps resolve fragments

Sensitive targeted profiling using TOF-MRM
Simultaneous nontargeted and sensitive targeted profiling using TOF-MRM

- TOF-MRM mode rivals limits of detection of high-end triple quadrupoles
- Targeted and nontargeted profiling performed in a single analysis

5 µL of 10 pM solution injected (50 amol)
Summary

• Data-independent multiplexing of CID yields extensive information in nontargeted profiling

• User training is key to method performance and minimizing operating costs
Acknowledgements

• Michigan State University
 – Rob Last
 – Tony Schilmiller
 – Jing Ning
 – Pengxiang Fan
 – Corny Barry
 – Eliana Gonzales-Vigil
 – Matt Bedewitz

• U. of Michigan
 • Eran Pichersky
 • Adam Schmidt

• Jones group
 – Feng Shi
 – Xiaoli Gao
 – Ramin Vismeh
 – Prabodha Ekanayaka
 – Banibrata Ghosh
 – Zhenzhen Wang
 – Sujana Pradhan
 – Steve Hurney
 – Fanny Chu

• National Science Foundation
• National Institutes of Health
• U.S. Department of Energy
• US Agency for International Development
• Michigan AgBioResearch